What is Energy Production?

What is Energy Production?
Before we get into more detail on the six components of conditioning listed in fig. 5, let’s briefly
talk about exactly what energy production really means in the first place. In the beginning of
this chapter, I told you that conditioning provides the fuel your muscles need to do the job of
punching, kicking, elbowing, etc. This is a pretty accurate and easy way to understand what
energy production is and how it works.
Your skeletal muscles are living tissue and just like the rest of your body, they require constant
energy to do their job of flexing and extending joints in a coordinated manner to move you
around. Your cardiac muscle also requires energy to pump blood throughout your body. The
more active you are, the more your muscles have to work, and thus the more fuel they require.
The fuel your muscles run on is a molecule called   Adenosine Triphosphate,   known as   ATP   for
short. Through a chemical reaction that breaks down ATP into two smaller molecules (ADP + P)
energy is released. It is this energy that is the fuel your muscles run on. In this way, ATP can be
thought of as the   energy currency   of your body.
All the food you eat goes through chemical reactions that break the food down into ATP
directly, or into sugars, fats, and proteins that are stored so they can later be turned into ATP as
needed. The entire process of taking the food you eat and turning it into the ATP molecules
that provide the biological energy your muscles run on is what energy production is all about.
Rate of Energy Production
As you can see in fig. 5, the energy production process can be broken down into three distinct
components that collectively make up this side of the equation. The first component we’ll
discuss is the   rate of energy production,   also known as the   power   component. In physics,
power is defined as “the rate of work being performed” but in the cage or ring power can be
more easily understood when you see someone get a powerful takedown or connect on a
vicious KO punch to end the fight.
In order to generate the kind of raw power it takes to hit someone so hard they barely
remember the fight, your muscles need to be able to contract and relax with lightning fast
speed. In order for them to do this, they need fuel to be provided at a very fast   rate.   The faster
your systems of energy production can generate the energy your muscles need, the faster they
can contract and relax and the more power they are able to generate.
Looking back at fig. 4, the rate of energy production can be seen by how steep the slope is
during rapid changes in energy expenditure. A steeper slope represents greater energy system
power and a greater necessity to rapidly generate the ATP your muscles need. Likewise, a more
gradual slope indicates a lower rate of energy production and thus less power. As a mixed
martial artist, it’s important that you have the ability to produce energy as rapidly as possible if
you want to be explosive and capable of getting the quick knockout or submission win.

If you are interested in working with an elite personal trainer, check out SAQStivity Pro Fitness 123 Eisenhower Lane S Lombard, IL 60148 (630) 620-7277


Final Thoughts on Activating the Gluteal Complex

Beginning basic squat patterns  After ensuring proper   hip   hinge mechanics, we   would   begin a basic squat progression  with   a   “potty   squat”   (see   figure 10.24). Sitting on the corner   of   a chair   or   a stool, the athlete  positions the feet under the body to squat   rise   off   the chair   without   using any   momentum shifts. The lumbar spine   is   neutral and braced and this begins   to   groove a good two-legged  squat position. Then progressing   to   a standing position, the arms are held   out   laterally and  moved in   front   of   the   body   as   the athlete squats   (see   figure 10.25).   Of   course,  emphasis   is  placed on maintaining a neutral lumbar spine and abdominal bracing. The   “Goblet   squat”  from Dan John also   has   proved very effective in adding depth to   the   squat. The athlete can  shift side to side while maintaining perfect spine posture working   the   hip   joints  .  Progressing   to   a single-legged squat involves the same arm   motion to   assist   balance.   As  the single legged squat  performed, the free leg   is   is   held in   front   as   if   the athlete were reaching  with   the toes   to   a distant object in   front   of   them on the   floor  .   The free leg   is   held behind and  the knee   is   touched to the floor,   or   the toe   is   reached   with   an   outstretched leg to a distant  object behind Finally,  the free leg   .   is   reached   out   to   a distant   object   placed laterally during  the squat. Variations include working the free  leg   to   different positions “around the clock”  (see   figure 10.26, while muscle activation levels are shown in figure   10  .  27) This challenges   .  the full  hip extensor,  flexor,  and abduction   torque   generators   together with   keen   motor  control. Full  integration   with   the pelvis and lumbar spine   is   achieved   with   emphasis on the  appropriate   motor   and   motion   patterns.  Specific focus   is   directed towards maintaining   a  neutral lumbar spine Focus  on hip   .   motion   and developing the extensor drive   through   the  hips   with   a stiff torso.


This series of articles was inspired by posts from Zach Cooper, CSCS, a strength coach who often writes on the topic.

Additional Strategies for Activating the Gluteal Complex

Lying on the back with the   knees   flexed and the feet on the floor, the athlete places the fingers on Glut Max   to   feel   its   activity. Image a coin placed   in   the gluteal fold which must   not be dropped. Activate   glut   max by   “squeezing”   the buttocks,   not   by creating hip extension. Focus   on the pelvis at this stage   to   ensure   that   no pelvic   tilting   occurs. The   lumbar   spine remains in  neutral posture   (see   figure 10.21). Then, once the activation   has   been mastered, begin bridging the torso off the floor The clinician/coach at this stage feels  the hamstrings  .   . Those   who   are  hamstring   dominant   and  gluteal  deficient will  immediately activate  the hamstrings   just   prior to motion occurring. This pattern   is   very   dominant   in those   who   have the aberrant crossed-pelvic syndrome,   but   is   also   seen   in   some sport-specific athletes such   as cyclists. Power athletes must override this hamstring pattern. The athlete must repeatedly try to   begin the bridging action   without   hamstring activity (or   at   least only mild activity)  . To   override the hamstring   dominant   tendency in some athletes requires coaching and cueing from the coach/clinician.   For   these challenging   cases   we place our   foot   against the athlete’s  toes,  instructing them   to   continue   with   the preparatory gluteal activation  and stimulating the quads by very mildly   attempting   to   extend the knees.  Buttressing their feet with   the clinician’s   foot   assists   this   (see   figure 10.22) A gentle stroke on the quads to   .   assist their   imaging   and perception also facilitates this pattern. Then repeat the   attempt   to   bridge with   gluteal dominance.   Now   maintain the pattern and   try   a one legged bridge   (see   figure 10  .  23)  .   This   skill must   be   perfected prior   to   more challenging hip extensor strength and power training. Once mastered, squat performance will improve.

The First Stage to Retraining the Gluteal Complex

The first stage involves   isolating   gluteus medius. Once again, the athlete needs   to   “feel” the muscle and perceive its activation.   Lay   on the side.   Place   the   thumb   on the   ASIS   and reach with   the fingers posteriorly – the tips will be over the gluteus medius   (see   figure 10.19). With the hips and knees flexed, spread the knees apart   with   the feet remaining together acting   as a hinge  .   Feel   with   the fingers the   Glut Med   activate. This manoeuvre   is   to   simply activate the Glut   Med   and should   not   be considered a strengthening exercise There   .   is   no need   to   offer resistance at this stage (resistance   is   imposed later during strength   training);   true isolation of the   Glut   Med   is   not   possible and   other   muscles are active. In this posture, the external hip rotators are recruited. Extending the hips   to   a neutral posture and repeating the   movement tends   to   activate the   Glut   Med   with   a greater integration   with   the Tensor   Fascia   Latae  .   An optional exercise   that   can  be added   to   the progression   is   the lateral leg   raise   with   the athlete maintaining   finger   contact   with   the   Glut   Med. This will add   to   the   challenge and  begin “strength”   training   (see   figure 10.20). Finally,  a   weight   bag can  be  added   to   the ankle for strength training This progression will enable the athlete to develop skill  in  conscious and   . unconscious   Glut Med   activation   during   all  activities.  Those   who   do   perform traditional barbell squats will   now   find   that   conscious external hip rotation and abduction will   achieve higher   Glut   Med   activation – and improved performance  . Figure 10.19 Anchoring the   thumb   on the   ASIS   and reaching   around   with   the finger   tips should   position   them   to   land on gluteus medius Opening the knees  like   .   a clam shell  will allow   the   athlete   to   feel the   glut   medius activation.

Building Good Squat Patterns

A good back needs healthy gluteal muscle function, while performance demands balanced hip power about each  axis.  This  section  describes  some  hip   motor   patterns that   inhibit performance and  compromise back  health,  together   with   documenting several  training progressions   to   address them. The crossed-pelvis  syndrome was  described  in  chapter 4,  where the gluteal complex appears to be inhibited during squatting patterns and  very common in those   is   with   a history of   back troubles (together   with   some others   as   well). Interestingly, we still do   not   know if the crossed-pelvis syndrome exists prior   to   back troubles or   is   a consequence   of   having them. Nonetheless, the syndrome  noticeable in both athletes and normals referred to our   is   research clinic.   This   results  in   two   concerns:  First,  those   with   aberrant gluteal patterns cannot spare their   backs   during squatting patterns since they   use   the hamstrings and erector spinae to drive the extension motion. Subsequently, the erector spinae loads up the lumbar spine.   In   this   way, healthy gluteal patterns are needed   to   spare  the back.  Second,   it   is   impossible   to   re-build optimal squat performance, either   for   strength   or   hip extensor power,   without   well integrated hip extensor patterns.   In   fact the reason   why   many athletes fail   to   properly rehabilitate   is because  of the emphasis  on  strengthening philosophies   without   addressing the aberrant gluteal patterns first.   This   failure by many strength coaches   is   one   of   the   reasons   for athletes to  be  sent   to   our   research  clinic.

A Note on Fascial Raking

We have learned many things   from our   work   with   intramuscular electrodes   that   have   to  be   implanted   in the abdominal wall   to   monitor   deep muscle activity A valuable discovery   .  involved the muscle activation facilitation mechanism. For example,   as   the canula (large bore  needle) penetrates the skin  in the abdominal region and touches the fascia   of   the oblique  muscles,   it   creates  a  characteristic  pain The  pain  can  be  reproduced   .   by   taking  a   long  fingernail,   digging   it   into   the oblique muscle and   “raked”  .   This produces a pain   that   can  be  referred   to   as   “scratchy”. Typically   it   causes   the   individual   to   respond   by contracting   the  muscle wall.  To   encourage complete activation of the abdominal wall, have the individual   lie   on their  back Prepare by having   .   them   place their hands under the   lumbar   region   to   prevent the spine  from flattening   to   the floor (this results   in   spine flexion and an increase in the risk of injury – don’t   allow   it   to   happen). Instruct them   to   contract the   abdominal   wall.  Facilitate this   by  taking   your   hand   with   a   wide   grip, placing   the   thumb   lateral   to   the   rectus abdominis and the  fingertips lateral   to   the   other   rectus – you are   gripping   into   the oblique muscles (see  Figure  10.15).   Do   not   grip the rectus abdominis.   Now   instruct   them   to   initiate a slight   flexion   motion  with   the locus   of   rotation   in   the middle   of   the sternum   (not   in the   lumbar   spine). The head,  neck and shoulders hardly move.   Now   “rake” the abdominals, asking the individual   to   “fight  with   your   abdominal wall”, and   “contract”  .   Irritate the obliques   by   squeezing   your   thumb  towards   your   fingertips,  raking the fascia.  Encourage   good   effort   while   you   are stimulating  the abdominal wall.  For   the   performance, athlete this procedure trains   the   abdominal   wall   for   short   range  stiffness  enhancement,   forming   the   foundation   for   eventual   plyometric   training   of   the  abdominal wall.   Even   accomplished athletes will report   instant   performance enhancement on  tasks   such   as   pull-ups   with   simultaneous fascial raking.

Differences Between the Hollow and the Brace

The brace produces  a true muscular girdle around the spine   with   both the abdominals and the extensors being  active   to   buttress against buckling and shear instability. In a most recent study we have found  that   there   is   a missing   component   to   spine stability when we   quantify   the role  of all  the  abdominal muscles.   We   suspect   that   activating the entire wall (rectus,  the obliques, and  transverse) creates a binding of the three   layers   to produce   an   augmented stiffness and stability  – similar to the glue between layers   of   wood   in   plywood. Again,  this super-stiffness   is   only  achieved with the brace.  Some individuals have  difficulty in understanding the conscious abdominal contraction  that   constitutes the brace.   For   these people we   do   the following. Generally, to demonstrate  abdominal bracing to the athlete,   we   stiffen one   of   our own joints, such   as   an   elbow, by  simultaneously activating the flexors and extensors. The athlete then palpates the joint both  before and after we stiffen it. Then   we   ask   the individual   to   attempt   to   stiffen her own joint  through simultaneous activation of flexors and extensors. Once   she   can  successfully stiffen  various peripheral joints, we demonstrate (again on ourselves,   with   athlete palpation) the  same  technique in  the torso,  achieving  abdominal  bracing.  Finally,  we again   ask   her   to  replicate the technique in her own torso. Occasionally, we   use   a portable   EMG   monitor   so   the  athlete can learn through biofeedback   what   5%, 10%,   or   80% of maximum contraction feels  like   (see   figure  10.14).   We   use   similar devices   to   teach  patients   how   to   maintain  the  contraction while on a wobble board and in functional situations such   as   when picking up a  child, getting on and off the toilet, and getting in and   out   of   cars.   For athletes, we choose  appropriate and familiar training tasks.